Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 911
1.
BMC Cancer ; 24(1): 561, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711034

Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.


Carcinoma, Squamous Cell , DNA Damage , Lung Neoplasms , Tenascin , Humans , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tenascin/genetics , Tenascin/metabolism , DNA Damage/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic , Prognosis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
2.
Int Immunopharmacol ; 133: 112029, 2024 May 30.
Article En | MEDLINE | ID: mdl-38640715

Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.


Fibroblasts , Fibrosis , Single-Chain Antibodies , Tenascin , Wound Healing , Humans , Wound Healing/drug effects , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/genetics , Tenascin/metabolism , Tenascin/genetics , Tenascin/immunology , Fibronectins/metabolism , Fibronectins/genetics , Animals , Cornea/pathology , Cornea/metabolism , Cells, Cultured , Fibronectin Type III Domain , Cell Line
3.
Mol Med Rep ; 29(6)2024 06.
Article En | MEDLINE | ID: mdl-38666538

Polycystic ovary syndrome (PCOS) is a globally prevalent gynecological disorder among women of childbearing age. The present study aimed to investigate the role of tenascin C (TNC) in PCOS and its potential mechanisms. Fasting blood glucose and serum insulin, the homeostasis model assessment of insulin resistance and the serum hormone levels were determined in PCOS rats. In addition, H&E staining was used for assessing pathology. In addition, the effects of TNC on oxidative stress and inflammation response in PCOS rat and cell models was assessed. Furthermore, the roles of TNC on KGN cell proliferation and apoptosis were determined employing EdU assay and flow cytometry. TLR4/NF­κB pathway­related proteins were measured using western blotting, immunofluorescence and immunohistochemistry. It was found that the mRNA and protein expression was upregulated in PCOS rats and in KGN cells induced by dihydrotestosterone (DHT). Knockdown of TNC relieved the pathological characteristics and the endocrine abnormalities of PCOS rats. Knockdown of TNC inhibited ovarian cell apoptosis, oxidative stress and inflammation in PCOS rats. Knockdown of TNC reversed the DHT­induced reduction in cell proliferation and increase in apoptosis in KGN cells. Furthermore, knockdown of TNC alleviated oxidative stress and inflammatory responses induced by DHT in KGN cells. Additionally, knockdown of TNC inhibited the toll­like receptor 4 (TLR4)/NF­κB signaling pathway in PCOS rats and DHT­treated KGN cells. In conclusion, knockdown of TNC could ameliorate PCOS in both rats and a cell model by inhibiting cell apoptosis, oxidative stress and inflammation via the suppression of the TLR4/NF­κB signaling pathway.


Apoptosis , Cell Proliferation , NF-kappa B , Oxidative Stress , Polycystic Ovary Syndrome , Signal Transduction , Tenascin , Toll-Like Receptor 4 , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/genetics , Female , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Rats , Tenascin/metabolism , Tenascin/genetics , Disease Models, Animal , Rats, Sprague-Dawley , Insulin Resistance , Humans , Cell Line
4.
Biomolecules ; 14(4)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38672524

Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.


Extracellular Matrix , Hippocampus , Neuronal Plasticity , Synapses , Tenascin , Animals , Tenascin/metabolism , Tenascin/genetics , Male , Mice , Hippocampus/metabolism , Extracellular Matrix/metabolism , Synapses/metabolism , Mice, Knockout , Neurons/metabolism , Mice, Inbred C57BL , Dentate Gyrus/metabolism
5.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640279

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Deafness , Hearing Loss, Sensorineural , Hearing Loss , Tenascin , Child, Preschool , Humans , China , Deafness/genetics , GTPase-Activating Proteins/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Tenascin/genetics
6.
Invest Ophthalmol Vis Sci ; 65(4): 38, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38656280

Purpose: Fuchs endothelial corneal dystrophy (FECD) is characterized by Descemet's membrane (DM) abnormalities, namely an increased thickness and a progressive appearance of guttae and fibrillar membranes. The goal of this study was to identify abnormal extracellular matrix (ECM) proteins expressed in FECD DMs and to evaluate their impact on cell adhesion and migration. Methods: Gene expression profiles from in vitro (GSE112039) and ex vivo (GSE74123) healthy and FECD corneal endothelial cells were analyzed to identify deregulated matrisome genes. Healthy and end-stage FECD DMs were fixed and analyzed for guttae size and height. Immunostaining of fibronectin, tenascin-C, osteopontin, and type XIV collagen was performed on ex vivo specimens, as well as on tissue-engineered corneal endothelium reconstructed using healthy and FECD cells. An analysis of ECM protein expression according to guttae and fibrillar membrane was performed using immunofluorescent staining and phase contrast microscopy. Finally, cell adhesion was evaluated on fibronectin, tenascin-C, and osteopontin, and cell migration was studied on fibronectin and tenascin-C. Results: SPP1 (osteopontin), FN1 (fibronectin), and TNC (tenascin-C) genes were upregulated in FECD ex vivo cells, and SSP1 was upregulated in both in vitro and ex vivo FECD conditions. Osteopontin, fibronectin, tenascin-C, and type XIV collagen were expressed in FECD specimens, with differences in their location. Corneal endothelial cell adhesion was not significantly affected by fibronectin or tenascin-C but was decreased by osteopontin. The combination of fibronectin and tenascin-C significantly increased cell migration. Conclusions: This study highlights new abnormal ECM components in FECD, suggests a certain chronology in their deposition, and demonstrates their impact on cell behavior.


Cell Movement , Endothelium, Corneal , Fibronectins , Fuchs' Endothelial Dystrophy , Osteopontin , Tenascin , Humans , Tenascin/metabolism , Tenascin/genetics , Fibronectins/metabolism , Fibronectins/genetics , Osteopontin/metabolism , Osteopontin/genetics , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/metabolism , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Aged , Cell Adhesion , Cells, Cultured , Female , Male , Gene Expression Regulation , Middle Aged , Descemet Membrane/metabolism , Descemet Membrane/pathology
7.
Proc Natl Acad Sci U S A ; 121(13): e2314588121, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38502691

During development, motor axons are guided toward muscle target by various extrinsic cues including extracellular matrix (ECM) proteins whose identities and cellular source remain poorly characterized. Here, using single-cell RNAseq of sorted GFP+ cells from smyhc1:gfp-injected zebrafish embryos, we unravel the slow muscle progenitors (SMP) pseudotemporal trajectory at the single-cell level and show that differentiating SMPs are a major source of ECM proteins. The SMP core-matrisome was characterized and computationally predicted to form a basement membrane-like structure tailored for motor axon guidance, including basement membrane-associated ECM proteins, as collagen XV-B, one of the earliest core-matrisome gene transcribed in differentiating SMPs and the glycoprotein Tenascin C. To investigate how contact-mediated guidance cues are organized along the motor path to exert their function in vivo, we used microscopy-based methods to analyze and quantify motor axon navigation in tnc and col15a1b knock-out fish. We show that motor axon shape and growth rely on the timely expression of the attractive cue Collagen XV-B that locally provides axons with a permissive soft microenvironment and separately organizes the repulsive cue Tenascin C into a unique functional dual topology. Importantly, bioprinted micropatterns that mimic this in vivo ECM topology were sufficient to drive directional motor axon growth. Our study offers evidence that not only the composition of ECM cues but their topology critically influences motor axon navigation in vertebrates with potential applications in regenerative medicine for peripheral nerve injury as regenerating nerves follow their original path.


Tenascin , Zebrafish , Animals , Tenascin/genetics , Zebrafish/genetics , Zebrafish/metabolism , Axons/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism
8.
Genet Test Mol Biomarkers ; 28(3): 114-122, 2024 Mar.
Article En | MEDLINE | ID: mdl-38471098

Background: The extracellular matrix (ECM) glycoprotein changes are associated with the pathogenesis and complications of atherosclerosis, leading to acute coronary syndrome (ACS). Tenascin-C (TNC), an ECM protein, has been implemented in the pathogenesis, diagnosis, and prognosis of patients with cardiovascular disease. Aim: The study aimed to compare the genetic variants of the TNC gene (rs13321, rs2104772, and rs12347433) between South Indians with ACS and healthy participants. Materials and Methods: This case-control study recruited 150 ACS patients as cases and 150 healthy participants as controls. TNC genotyping was performed using TaqMan 5'-exonuclease allele discrimination assay. Serum TNC levels were measured by enzyme-linked immunosorbent assay. Results: Serum TNC levels were significantly higher in cases compared with controls. No significant difference was observed in allele and genotype frequencies of rs13321, rs2104772, and rs12347433 between cases and controls, which was confirmed by dominant, recessive, codominant, and homozygotic genetic models. The patients with heterozygous genotypes of rs13321, rs2104772, and rs12347433 had significantly lower serum TNC levels than patients with respective homozygous genotypes. Haplotype analyses revealed that the C-T-A haplotype in the block of rs13321-rs12347433-rs2104772 was associated with lower ACS risk (OR = 0.33, 95% CI: 0.15 - 0.75; p = 0.005). Also, the C-T-T and G-T-A haplotypes of the TNC gene were associated with higher and lower serum TNC levels, respectively. Conclusion: Our study demonstrated no genetic association between single nucleotide polymorphisms of the TNC gene and ACS risk; however, the C-T-A haplotype of the TNC gene might be associated with reduced ACS risk in South Indians.


Acute Coronary Syndrome , Tenascin , Humans , Acute Coronary Syndrome/genetics , Case-Control Studies , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Tenascin/genetics , South Asian People/genetics
9.
Biochem Biophys Res Commun ; 703: 149634, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38354465

Fractures are frequent and severe musculoskeletal injuries. This study aimed to investigate the function of tenascin-C (TNC) in regulating chondrogenic during fracture healing and elucidate the underlying molecular mechanisms. A well-established femur fracture model in male C57BL/6J mice was used to transect the middle diaphysis of the femur. To identify the essential role of TNC, shTNC lentiviruses or TNC protein were administered in the animal model. Micro-CT analysis, histologic analysis, immunostaining assays, and gene expression analysis were employed to investigate the effect of TNC during fracture healing. An in vitro mesenchymal stem cell culture system was developed to investigate the role and molecular mechanism of TNC in regulating chondrogenesis. TNC expression was induced at the inflammatory phase and peaked at the cartilaginous callus phase during fracture healing. Knockdown of TNC expression in callus results in decreased callus formation and impaired fracture healing. Conversely, administration of exogenous TNC promoted chondrogenic differentiation, cartilage template formation and ultimately improved fracture healing. Both the Hedgehog and Hippo signaling pathways were found to be involved in the pro-chondrogenic function of TNC. Our observations demonstrate that TNC is a crucial factor responsible for endochondral ossification in fracture healing and provide a potential therapeutic strategy for promoting fracture healing.


Femoral Fractures , Fracture Healing , Osteogenesis , Tenascin , Animals , Male , Mice , Bony Callus/pathology , Femoral Fractures/pathology , Hedgehogs , Hippo Signaling Pathway , Mice, Inbred C57BL , Tenascin/genetics , Tenascin/metabolism
10.
Int J Biol Sci ; 20(1): 127-136, 2024.
Article En | MEDLINE | ID: mdl-38164188

Tenascin C (TNC), a rich glycoprotein of the extracellular matrix, exhibits a pro-atherosclerosis or anti-atherosclerosis effect depending on its location. TNC, especially its C domain/isoform (TNC-C), is strongly overexpressed in atherosclerotic plaque active areas but virtually undetectable in most normal adult tissues, suggesting that TNC is a promising delivery vector target for atherosclerosis-targeted drugs. Many delivery vectors were investigated by recognizing TNC-C, including G11, G11-iRGD, TN11, PL1, and PL3. F16 and FNLM were also investigated by recognizing TNC-A1 and TNC, respectively. Notably, iRGD was undergoing clinical trials. PL1 not only recognizes TNC-C but also the extra domain-B (EDB) of fibronectin (FN), which is also a promising delivery vector for atherosclerosis-targeted drugs, and several conjugate agents are undergoing clinical trials. The F16-conjugate agent F16IL2 is undergoing clinical trials. Therefore, G11-iRGD, PL1, and F16 have great development value. Furthermore, ATN-RNA and IMA950 were investigated in clinical trials as therapeutic drugs and vaccines by targeting TNC, respectively. Therefore, targeting TNC could greatly improve the success rate of atherosclerosis-targeted drugs and/or specific drug development. This review discussed the role of TNC in atherosclerosis, atherosclerosis-targeted drug delivery vectors, and agent development to provide knowledge for drug development targeting TNC.


Atherosclerosis , Plaque, Atherosclerotic , Adult , Humans , Tenascin/genetics , Atherosclerosis/drug therapy , Extracellular Matrix , Plaque, Atherosclerotic/drug therapy , Protein Isoforms
11.
Sci Adv ; 10(3): eadi5791, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38241368

The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.


Keratinocytes , Tenascin , Tenascin/genetics , Epidermis , Skin , Merkel Cells/physiology , Hair Follicle
12.
F S Sci ; 5(1): 69-79, 2024 Feb.
Article En | MEDLINE | ID: mdl-38092313

OBJECTIVE: To identify cytokines or extracellular matrix components that contribute to adhesion to, and invasion of, the peritoneum, proximal to lesions in the early phase of endometriosis. DESIGN: Laboratory-based study. SETTING: University Hospital and Laboratory of Animal Science. PATIENTS AND ANIMALS: Five women with ovarian endometrioma, 138 wild-type (WT) C57BL/6N mice, and 48 Tenascin C (Tnc) knockout (TncKO) mice. INTERVENTIONS: To establish a murine endometriosis model, 20 pieces of minced uterine tissue fragments from each horn were administered intraperitoneally to syngeneic mice. Three days later, endometriotic lesions and peritoneal tissues were collected. Separately, we transfected human peritoneal mesothelial cells (HMrSV5) or human endometrial stromal cells (hESCs) with Tnc small interfering ribonucleic acid. MAIN OUTCOME MEASURES: We employed a polymerase chain reaction array to profile gene expression in the murine peritoneum, in both peritoneum distal to lesions and peritoneum surrounding lesions (PSL). The expression of upregulated genes in the PSL was verified in the peritoneal samples by real-time reverse transcription-polymerase chain reaction. TncKO mice were used to investigate the role of Tnc in the development of endometriosis. We evaluated the proliferative activity or inflammatory state of lesions by Ki67 or CD3 immunostaining. Intraperitoneal distribution of macrophages was assessed by fluorescence-activated cell sorting. Using Tnc small interfering ribonucleic acid, we examined the invasive capacity of hESCs in a coculture system with HMrSV5. RESULTS: Tnc gene expression was significantly higher in PSL than in peritoneum distal to lesions. The weight and number of TncKO lesions in TncKO hosts were lower than those of WT lesions in WT hosts. In contrast, the weight and number of nonattached TncKO lesions in TncKO hosts were higher than those of nonattached WT lesions in WT hosts. We observed decreased Ki67-positive cells or H-scores for CD3, a lower proportion of M1 macrophages, and a higher proportion of M2 macrophages in TncKO lesions in TncKO recipients. Silencing of Tnc expression in hESCs and HMrSV5 diminished the invasivity of hESCs. CONCLUSION: Tnc may be a crucial factor in the development of early peritoneal endometriosis.


Endometriosis , Peritoneum , Tenascin , Animals , Female , Humans , Mice , Endometriosis/genetics , Endometriosis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Ki-67 Antigen/metabolism , Mice, Inbred C57BL , Peritoneum/metabolism , Peritoneum/pathology , RNA/metabolism , Tenascin/genetics , Tenascin/metabolism
13.
J Endocrinol Invest ; 47(4): 833-841, 2024 Apr.
Article En | MEDLINE | ID: mdl-37815751

BACKGROUND: 21-Hydroxylase deficiency (21-OHD) is caused by pathogenic CYP21A2 variations. CYP21A2 is arranged in tandem with its highly homologous pseudogene CYP21A1P; therefore, it is prone to mismatch and rearrangement, producing different types of complex variations. There were few reports on using only one method to detect different CYP21A2 variants simultaneously. AIMS: Targeted long-read sequencing method was used to detect all types of CYP21A2 variants in a series of patients with 21-OHD. METHODS: A total of 59 patients with 21-OHD were enrolled from Peking Union Medical College Hospital. Long-range locus-specific PCR and long-read sequencing (LRS) were performed to detect the pathogenic variants in CYP21A2. RESULTS: Copy-number variants of CYP21A2 were found in 25.4% of patients, including 5.1% with 3 copies of CYP21A2, 16.9% with 1 copy of CYP21A2, and 3.4% with 0 copy of CYP21A2. The remaining 74.6% of patients had 2 copies of CYP21A2. Pathogenic variants were identified in all 121 alleles of 59 patients. Specifically, single-nucleotide variants and small insertions/deletions (< 50 bp) were detected in 79 alleles, of which conversed from CYP21A1P were detected in 63 alleles, and rare variants were found in the other 16 alleles. Large gene conversions (> 50 bp) from pseudogene were detected in 10 alleles, and different chimeric genes (CYP21A1P/CYP21A2 or TNXA/TNXB) formed by large deletions were detected in 32 alleles. Of all variants, p.I173N was the most common variant (19.0%). CONCLUSIONS: Our study demonstrated that targeted long-read sequencing is a comprehensive method for detecting CYP21A2 variations, which is helpful for genetic diagnosis in 21-OHD patients.


Adrenal Hyperplasia, Congenital , Steroid 21-Hydroxylase , Humans , Steroid 21-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/genetics , Mutation , Pseudogenes , Tenascin/genetics
14.
Environ Toxicol ; 39(3): 1442-1455, 2024 Mar.
Article En | MEDLINE | ID: mdl-37987507

Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.


Carcinoma, Non-Small-Cell Lung , Homeodomain Proteins , Lung Neoplasms , Tenascin , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tenascin/genetics
15.
Dev Biol ; 504: 98-112, 2023 12.
Article En | MEDLINE | ID: mdl-37778717

Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.


Ambystoma mexicanum , Tenascin , Animals , Humans , Tenascin/genetics , Tenascin/metabolism , Ambystoma mexicanum/metabolism , Extracellular Matrix/metabolism , Muscles/metabolism , Mammals/metabolism , Muscle, Skeletal/metabolism
16.
Sci Rep ; 13(1): 18490, 2023 10 28.
Article En | MEDLINE | ID: mdl-37898719

Deficiency of an extracellular matrix glycoprotein tenascin-X (TNX) leads to a human heritable disorder Ehlers-Danlos syndrome, and TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. We previously reported that TNX-deficient (Tnxb-/-) mice exhibit mechanical allodynia and hypersensitivity to myelinated A-fibers. Here, we investigated the pain response of Tnxb-/- mice using pharmacological silencing of A-fibers with co-injection of N-(2,6-Dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314), a membrane-impermeable lidocaine analog, plus flagellin, a toll-like receptor 5 (TLR5) ligand. Intraplantar co-injection of QX-314 and flagellin significantly increased the paw withdrawal threshold to transcutaneous sine wave stimuli at frequencies of 250 Hz (Aδ fiber responses) and 2000 Hz (Aß fiber responses), but not 5 Hz (C fiber responses) in wild-type mice. The QX-314 plus flagellin-induced silencing of Aδ- and Aß-fibers was also observed in Tnxb-/- mice. Co-injection of QX-314 and flagellin significantly inhibited the mechanical allodynia and neuronal activation of the spinal dorsal horn in Tnxb-/- mice. Interestingly, QX-314 alone inhibited the mechanical allodynia in Tnxb-/- mice, and it increased the paw withdrawal threshold to stimuli at frequencies of 250 Hz and 2000 Hz in Tnxb-/- mice, but not in wild-type mice. The inhibition of mechanical allodynia induced by QX-314 alone was blocked by intraplantar injection of a TLR5 antagonist TH1020 in Tnxb-/- mice. These results suggest that mechanical allodynia due to TNX deficiency is caused by the hypersensitivity of Aδ- and Aß-fibers, and it is induced by constitutive activation of TLR5.


Ehlers-Danlos Syndrome , Hyperalgesia , Animals , Humans , Mice , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/genetics , Extracellular Matrix , Flagellin , Hyperalgesia/genetics , Hyperalgesia/complications , Nerve Fibers, Unmyelinated , Tenascin/genetics , Toll-Like Receptor 5
17.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article En | MEDLINE | ID: mdl-37373332

Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.


Myocardial Infarction , Tenascin , Animals , Humans , Mice , Endothelial Cells/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , Tenascin/genetics , Tenascin/metabolism , Ventricular Remodeling/physiology
18.
J Biol Chem ; 299(8): 104952, 2023 08.
Article En | MEDLINE | ID: mdl-37356715

Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.


Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Tenascin , Animals , Mice , Tenascin/genetics , Tenascin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Extracellular Matrix/metabolism , Aggrecans/metabolism , Neuronal Plasticity
19.
Nat Commun ; 14(1): 2004, 2023 04 10.
Article En | MEDLINE | ID: mdl-37037861

Dermal fibroblasts and cutaneous nerves are important players in skin diseases, while their reciprocal roles during skin inflammation have not been characterized. Here we identify an inflammation-induced subset of papillary fibroblasts that promotes aberrant neurite outgrowth and psoriasiform skin inflammation by secreting the extracellular matrix protein tenascin-C (TNC). Single-cell analysis of fibroblast lineages reveals a Tnc+ papillary fibroblast subset with pro-axonogenesis and neuro-regulation transcriptomic hallmarks. TNC overexpression in fibroblasts boosts neurite outgrowth in co-cultured neurons, while fibroblast-specific TNC ablation suppresses hyperinnervation and alleviates skin inflammation in male mice modeling psoriasis. Dermal γδT cells, the main producers of type 17 pathogenic cytokines, frequently contact nerve fibers in mouse psoriasiform lesions and are likely modulated by postsynaptic signals. Overall, our results highlight the role of an inflammation-responsive fibroblast subset in facilitating neuro-immune synapse formation and suggest potential avenues for future therapeutic research.


Psoriasis , Tenascin , Male , Mice , Animals , Tenascin/genetics , Tenascin/metabolism , Neuroimmunomodulation , Extracellular Matrix Proteins/metabolism , Disease Models, Animal , Psoriasis/metabolism , Fibroblasts/metabolism , Inflammation/pathology
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166684, 2023 06.
Article En | MEDLINE | ID: mdl-36878305

Tenascin C (TNC) is an extracellular matrix (ECM) protein and a potential biomarker affecting progression of different tumor types, such as pancreatic and lung cancer. Alternative splicing variants of TNC are known to have an impact on interaction partners like other ECM proteins or cell surface receptors, including epidermal growth factor receptor (EGFR), leading to numerous and sometimes opposite roles of TNC in tumor cell dissemination and proliferation. Only little is known about the impact of TNC on biologic characteristics of lung cancer, such as invasion and metastatic potential. In the present study, we could link an increased expression of TNC in lung adenocarcinoma (LUAD) tissues with an unfavorable clinical outcome of patients. Furthermore, we investigated the functional role of TNC in LUAD. Immunohistochemical staining of TNC revealed a significant increase of TNC levels in primary tumours and metastases compared to normal lung tissue. Additionally, a significant correlation between TNC mRNA expression and EGFR copy number and protein expression levels has been determined. Moreover, inhibition of TNC in lung fibroblasts led to reduced invasiveness of LUAD cells harboring EGFR-activating mutations and to a shorter lamellipodia perimeter and a reduced lamellipodia area on the surface of LUAD cells. This study provides the evidence that TNC expression might be a biological relevant factor in LUAD progression in an EGFR-dependent manner and that it regulates tumor cell invasion by rearrangement of the actin cytoskeleton, especially affecting lamellipodia formation.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Matrix/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Tenascin/genetics , Tenascin/metabolism
...